skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhendong Wang, Zhen Wang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the burgeoning of autonomous driving, the edgedeployed integrated CPU/GPU (iGPU) platform gains significant attention from both academia and industries. NVIDIA issues a series of Jetson iGPU platforms that perform well in terms of computation capability, power consumption, and mobile size. However, these iGPU platforms typically contain very limited physical memory, which could be the bottleneck of these autonomous driving and edge computing applications. Although the introduction of the Unified Memory (UM) model in GPU programming can reduce the memory footprint, the programming legacy of the UM model initializes data on the CPU side by default as the conventional copyand- execute model does, which causes significant latency of application execution. In this paper, we propose an enhanced unified memory management model (eUMM), which delivers a prefetch-enhanced data initialization method on the GPU side of the iGPU platform. We evaluate eUMM on the representative Jetson TX2 and Xavier AGX platforms and demonstrate that eUMM not only reduces the initialization latency significantly but also benefits the following kernel computation and the entire application execution latency. 
    more » « less